

JBD-003-1101001

Seat No.

M. Sc. (Sem. I) (CBCS) Examination

December - 2019

C - 101 : Inorganic Chemistry

Faculty Code: 003

Subject Code: 1101001

Time: Hours] [Total Marks: 70

Instructions: (1) All Questions are compulsory.

(2) All Questions carry equal Marks.

1 Answer the following : (Any Seven)

14

- (a) Define Huckel π electron theory.
- (b) Discuss J-J coupling.
- (c) Write short note on Sol-Gel synthesis.
- (d) What do you mean by Hybridization ? Explain.
- (e) Explain spin-orbit interaction.
- (f) Give the limitation of Valence Bond Theory.
- (g) Write a note on Quantum dots.
- (h) Define Isomer shift.
- (i) Draw the structure of Fe₃(CO)₁₂ and predict the MB spectrum of it.
- (j) Who nanotechnology is useful? Explain.
- 2 Answer the following: (Any Two)

14

- (a) Explain the importance of EDTA in analysis.
- (b) Explain delocalization energy in conjugated system with suitable example.
- (c) Discuss the Mossbauer spectrum of $K_3[Fe(CN)_6]$

3	Answer the following:		14
	(a)	Derive Van Vleck formula for magnetic Susceptibility.	
	(b)	Explain Huckel pi-electron theory and its application	
		to Butadiene.	
		\mathbf{OR}	
3	Answer the following:		14
	(a)	Discuss the stereo chemical applications and magnetic	
		properties of Lanthanide and Actinide series.	
	(b)	Evaluate the Magnetic Moment for Multiple width	
		small compare to kT.	
4	Ans	wer the following:	14
	(a)	Evaluate the coefficient of wave function for sp ² hybrid	
		orbitals and show that the bond angle is of 120°	
	(b)	Compare the Mossbauer spectrum of the following	
		(1) FeCl_3	
		(2) FeSO_4	
5	Answer the following: (Any Two)		14
	(a)	Discuss different methods for determination of magnetic	
		susceptibility.	
	(b)	Discuss the use of the following reagents in Inorganic	
		analysis	
		(1) Cerric Sulphate	
		(2) Pottassium Iodate	
	(c)	How Nano catalyst property can be tailored?	
	(d)	Write note on spin multiplicity and find out the spectral	
		term of the following	
		(1) Mn^{++}	
		(2) Cr^{+++}	